# SOME ASYMPTOTIC PROPERTIES OF MACROPARAMETERS OF RAREFIED GAS EXPANSION INTO VACUUM 

PMM Vol. 41, № 1, 1977, pp. 72-78
V.I. ZHUK
(Moscow)
(Received July 6, 1976)
The problem of expansion of a plane layer of a Maxwellian gasinto vacuum is considered. The expansion in terms of the Knudsen numbers has a logarithmic singularity at large values of time, and this singularity can be removed by slight stretching of the time coordinate. An asymptotic solution is derived describing a distant field of flow in a plane stationary stream for the Knudsen numbers tending to zero.

Investigation of the plane expansion of a rarefied gas of finite mass into vacuum at small initial Knudsen numbers [1], shows that the continuous medium regime is violated when the values of time are of the order of $\mathrm{Kn}^{-a}, \sigma=$ $3 / 2(1-v)^{-1}$, under the assumption that the viscosity and temperature are connected by the power relation $\mu=T^{\nu}$. In a particular case when $v=1$ is studied below, a uniformly valid solution can be obtained using the Lighthill method of deformed coordinates. This method was applied for the first time in [2] to a steady flow of a rarefied gas into vacuum.

1. Before studying the expansion of a Maxwellian gas, we shall give an asymptotic solution describing a distant flow field in a plane stationary stream, since the equations in the outer region remain the same on passing to a one-dimensional unsteady problem.

A steady expansion of gas with cylindrical symmetry was analyzed in [2-4]. We shall consider a more general flow in which the macroparameters depend not only on the radius, but also on the azimuthal angle $\varphi$. The present formulation can serve as a model for the conditions which exist when a rarefied gas flows through a plane slit. Let us write the generalized kinetic Krook's equation in cylindrical coordinates

$$
\begin{align*}
& \xi_{r} \frac{\partial f}{\partial r}+\frac{\xi_{\varphi}}{r} \frac{\partial f}{\partial \varphi}+\frac{\xi_{\varphi}^{2}}{r} \frac{\partial f}{\partial \xi_{r}}-\frac{\xi_{r} \xi_{\varphi}}{r} \frac{\partial f}{\partial \xi_{\varphi}}=A n T^{1-\psi}\left(f^{+}-f\right)  \tag{1.1}\\
& A \sim \mathrm{Kn}^{-1}, \quad \mu=T^{\nu}
\end{align*}
$$

All quantities are reduced to their dimensionless form relative to the gas parameters near the slit; the Knudsen number defined across the slit width is assumed small; the inviscid flow equations become valid when $\mathrm{Kn} \rightarrow 0$. The radial character of the distant flow enables us to write the gas dynamic solution in the form

$$
\begin{align*}
& u=w_{0}+\frac{w_{1}(\varphi)}{r^{1_{*}}}+\ldots, \quad n=\frac{\rho_{0}(\varphi)}{r}+\frac{\rho_{1}(\varphi)}{r^{D_{i}}}+\ldots  \tag{1.2}\\
& v=\frac{p_{1}(\varphi)}{r^{7_{3}}}+\ldots, \quad T=\frac{\left[\rho_{0}(\varphi)\right]^{t_{1 / 2}}}{r^{7 / s}}+\frac{q_{1}(\varphi)}{r^{4_{s}}}+\ldots, \quad r \rightarrow \infty
\end{align*}
$$

Here $u$ and $v$ denote, respectively, the radial and transversal velocity components, $w_{0}$ is the limiting velocity during the isentropic flow into vacuum and $r$ is the coordinate
defining the distances from the $z$-axis, along which the gas parameters are not changed. By specifying $\rho_{0}(\varphi)$, we define the remaining functions $w_{1}, v_{1}, \rho_{1}, q_{1}$. The form of $\rho_{0}(\varphi)$ follows from the exact solution at $r=O$ (1). Substituting the expressions (1.2) into (1.1) and equating the convective and the collision terms, we find that the inner gas dynamic solution is ineffective at the distances

$$
r=O\left(A^{0}\right), \quad \sigma=3 / 2(1-v)^{-1}
$$

Following a method used earlier in investigating an axisymmetric flow [6], we pass to the variables $r_{1}=r A^{-\sigma}, \quad n_{1}=n A^{\sigma}, \quad T_{1}=T A^{2 \sigma \mid 3}$

$$
\alpha=\left(\xi_{r}-u\right) A^{\sigma / 3}, \quad \beta=\left(\xi_{\varphi}-v\right) A^{\sigma / 3}, \quad \gamma=\xi_{z} A^{\sigma / 3}
$$

Equation (1.1) now becomes

$$
\begin{align*}
& u r_{1} \frac{\partial f}{\partial r_{1}}-\alpha r_{1} \frac{\partial f}{\partial \alpha} \frac{\partial u}{\partial r_{1}}-\alpha r_{1} \frac{\partial f}{\partial \beta} \frac{\partial v}{\partial r_{1}}+v \frac{\partial f}{\partial \varphi}-\beta \frac{\partial f}{\partial \alpha} \frac{\partial u}{\partial \varphi}-\beta \frac{\partial f}{\partial \beta} \frac{\partial v}{\partial \varphi}+  \tag{1.3}\\
& \quad 2 \beta v \frac{\partial f}{\partial \alpha}-(\beta u+\alpha v) \frac{\partial f}{\partial \beta}-A^{\sigma / 3} u r_{1} \frac{\partial f}{\partial \alpha} \frac{\partial u}{\partial r_{1}}+u r_{1} \frac{\partial f}{\partial \beta} \frac{\partial v}{\partial r_{1}}+v \frac{\partial f}{\partial \alpha} \frac{\partial u}{\partial \varphi}+ \\
& \left.\quad v \frac{\partial f}{\partial \beta} \frac{\partial v}{\partial \varphi}-v^{2} \frac{\partial f}{\partial \alpha}+u v \frac{\partial f}{\partial \beta}\right)+A^{-\sigma / 3}\left(r_{1} \alpha \frac{\partial f}{\partial r_{1}}+\beta \frac{\partial f}{\partial \varphi}+\beta^{2} \frac{\partial f}{\partial \alpha}-\alpha \beta \frac{\partial f}{\partial \beta}\right)= \\
& r_{1} n_{1} T_{1}^{1-v}\left(f^{+}-f\right)
\end{align*}
$$

Integrating (1.3) over the space of velocities with weights $\alpha$ and $\beta$, we obtain the following equations for the macroscopic velocity:

$$
\begin{align*}
& u r_{1} \frac{\partial u}{\partial r_{1}}+v \frac{\partial u}{\partial \varphi}-v^{2}=O\left(A^{-2 \sigma \mid 3}\right)  \tag{1.4}\\
& u r_{1} \frac{\partial v}{\partial r_{1}}+v \frac{\partial v}{\partial \varphi}+u v=O\left(A^{-2 \sigma \mid 3}\right)
\end{align*}
$$

The outer solution admits the representation

$$
\begin{aligned}
& u=U_{0}+U_{1} A^{-2 a / 3}+\cdots, \quad n_{1}=N_{0}+N_{1} A^{-2 a \mid 3}+\cdots \\
& v=V_{0}+V_{1} A^{-20 \mid 3}+\cdots, \quad f=F_{0}+F_{1} A^{-0 \mid 3}+\cdots
\end{aligned}
$$

From Eqs. (1.4) and the equation of continuity we obtain, utilizing the conditions of matching to the inner solution (1.2)

$$
U_{0}=w_{0}, \quad V_{0}=0, \quad N_{0}=\rho_{0}(\varphi) / r_{1}
$$

Taking into account the results obtained, we can write a kinetic equation for the function $F_{0}$ in the form

$$
\begin{equation*}
r_{1} U_{0} \frac{\partial F_{0}}{\partial r_{1}}-\beta U_{0} \frac{\partial F_{0}}{\partial \beta}=\rho_{0}(\varphi) \tau^{1-\nu}\left(F^{+}-F\right) \tag{1.5}
\end{equation*}
$$

Let us introduce the quantities

$$
\begin{align*}
& \overline{\alpha^{2}}=\frac{1}{N_{0} r_{1}} \int \alpha^{2} F_{0} d \alpha d B d \gamma, \quad \overline{B^{2}}=\frac{1}{N_{0} r_{1}^{z}} \int B^{2} F_{0} d \alpha d B d \gamma  \tag{1,6}\\
& \overline{\gamma^{2}}=\frac{1}{N_{0} r_{1}} \int \gamma^{2} F_{0} d \alpha d B d \gamma, \quad B=\beta r_{1}, \frac{3}{2} \tau=\overline{\alpha^{2}}+\overline{B^{2}}+\overline{\gamma^{2}}
\end{align*}
$$

From (1,5) we obtain the following moment equations:

$$
\begin{equation*}
\frac{\partial}{\partial r_{1}} \overline{a^{2}}=\frac{N_{0}}{U_{0}} \tau^{1-\nu}\left(\frac{\gamma}{2}-\overline{a^{2}}\right), \quad \frac{\partial}{\partial r_{1}} \overline{\gamma^{2}}=\frac{N_{0}}{U_{0}} \tau^{1-\nu}\left(\frac{\tau}{2}-\overline{\gamma^{2}}\right) \tag{1.7}
\end{equation*}
$$

$$
\frac{\partial}{\partial r_{1}} r_{1}^{2} \overline{B^{2}}=\frac{N_{0}}{U_{0}} \tau^{1-v} r_{1}{ }^{2}\left(\frac{\tau}{2}-\overline{B^{2}}\right)
$$

Adding Eqs. (1.7) together and using (1.6), we obtain

$$
\begin{equation*}
\frac{3}{4} \frac{\partial \tau}{\partial r_{1}}=-\frac{\overline{B^{2}}}{r_{1}} \tag{1.8}
\end{equation*}
$$

Substitution of (1.8) into the last equation of the system (1.7) now yields the following equation for the temperature:

$$
\begin{align*}
& r_{1}^{2} \frac{\partial \partial^{2} \tau}{\partial r_{1}^{2}}+r_{1} \frac{\partial \tau}{\partial r_{1}}\left(3+\rho(\varphi) \tau^{1-v}\right)+\frac{2}{3} \rho(\varphi) \tau^{2-v}=0  \tag{1.9}\\
& \rho(\varphi)=\rho_{0}(\varphi) / U_{0}
\end{align*}
$$

Using the transformation

$$
\theta=\ln t, \quad \partial \tau / \partial \theta=-2 \tau \Psi
$$

we reduce (1.9) to the following first order equation:

$$
\begin{equation*}
\frac{\partial \Psi}{\partial \tau}=\frac{1}{\tau}(1-\Psi)+\frac{\rho}{2 \tau^{\nu}}\left(1-\frac{1}{3 \Psi}\right) \tag{1.10}
\end{equation*}
$$

The singularity $\tau=0, \Psi=0$ is a node, and the point $\tau=0, \Psi=1$ is a saddle. The possibility of matching with the inner solution is determined by the behavior of the integral curves at the point of infinity. A unique integral curve exists which emerges from the saddle-type singularity $\tau=\infty, \Psi=1 / 3$, and the corresponding solution in the physical plane is

$$
\tau=G(\varphi) / r_{1}^{2 / s}, \quad r_{1} \rightarrow 0
$$

Comparing this with (1.2), we find the multiplying factor $G(\varphi)=\left[\rho_{0}(\varphi)\right]^{1 / 2}$. The integral curve emerging from the singularity $\tau=\infty, \Psi=1 / 3$, cannot arrive at the saddle point $\tau=0, \Psi=1$, since by (1.10) we have $\partial \Psi / \partial \tau>0$ when $1 / 3<$ $\Psi<1$. Thus the asymptotics with $r_{1} \rightarrow \infty$ is determined by the solution entering the node $\tau=0, \Psi=0$

$$
\begin{equation*}
\Psi=\frac{\rho}{6} \tau^{1-v}+O\left(\tau^{2-2 v}\right) \tag{1.11}
\end{equation*}
$$

and this yields the following expression for the temperature:

$$
\begin{equation*}
\tau=\left[\left(\frac{1}{3} \frac{\rho_{0}(\varphi)}{U_{0}} \ln r_{1}\right)(1-v)\right]^{-1 /(1-v)}, \quad r_{1} \rightarrow \infty \tag{1,12}
\end{equation*}
$$

The properties of the solution shown above can be confirmed quantitatively by the results of the numerical investigation in [7] of the flow from a plane slit, according to which the density and velocity are not significantly affected by the decrease in the Knudsen number, while the temperature at the distance from the slit shows a tendency to decrease practically to zero. Moreover, the increase in temperature with increasing azimuthal angle $\varphi$ noted in [7] follows from the formula (1.12) since the function $\rho_{0}(\varphi)$ decreases on moving away from the central streamline.
2. Next we consider a one-dimensional unsteady expansion of gas into vacuum, using the conservation equations

$$
\begin{align*}
& \frac{\partial n}{\partial t}+\frac{\partial n u}{\partial x}=0  \tag{2.1}\\
& n \frac{\partial u}{\partial t}+n u \frac{\partial u}{\partial x}=-\frac{1}{2} \frac{\partial n T}{\partial x}+\frac{4}{3} \frac{\partial}{\partial x}\left(\bar{\mu} \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial x} P_{x x}^{(2)}
\end{align*}
$$

$$
\begin{aligned}
& \frac{3}{2} n\left(\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}\right)=-n T \frac{\partial u}{\partial x}+\frac{8}{3} \bar{\mu}\left(\frac{\partial u}{\partial x}\right)^{2}+\frac{\partial}{\partial x} k \frac{\partial T}{\partial x}- \\
& \quad 2 P_{x x}^{(2)} \frac{\partial u}{\partial x}-\frac{\partial}{\partial x} q_{x}^{(2)} \\
& \bar{\mu}=\frac{1}{2} \mu A^{-1}, \quad k=\frac{15}{8} \mu A^{-1}, \quad \mu=T^{\nu}, \quad A=\frac{8}{5 \sqrt{\pi}} \frac{1}{\mathrm{~K} n} \rightarrow \infty
\end{aligned}
$$

where we use the dimensionless coordinates of [1]. By $P_{x x}^{(2)}, q_{x}^{(2)}$ we denote the Barnett stress and heat flux components which, for the generalized Krook equations, are written in the form

$$
\begin{aligned}
& P_{x x}^{(2)}=A^{-2} \frac{\mu^{2}}{n T}\left[\frac{8}{9}\left(\frac{\partial u}{\partial x}\right)^{2}\left(1-\frac{1}{2} \frac{T}{\mu} \frac{d \mu}{d T}\right)+\frac{1}{6} \frac{\partial^{2} T}{\partial x^{2}}+\frac{1}{2}\left(\frac{\partial T}{\partial x}\right)^{2} \frac{1}{\mu} \frac{d \mu}{d T}-\right. \\
& \left.\quad \frac{1}{3} \frac{\partial}{\partial x}\left(\frac{T}{n} \frac{\partial n}{\partial x}\right)\right], \quad q_{x}^{(2)}=A^{-2} \frac{\mu^{2}}{n T}\left[\frac{63}{8} \frac{\partial u}{\partial x} \frac{\partial T}{\partial x}-\frac{T}{n} \frac{\partial u}{\partial x} \frac{\partial n}{\partial x}-\right. \\
& \left.\frac{7}{8} T \frac{\partial^{2} u}{\partial x^{2}}-\frac{7}{8} \frac{T}{\mu} \frac{\partial u}{\partial x} \frac{\partial T}{\partial x} \frac{d \mu}{d T}\right]
\end{aligned}
$$

Substituting into Eqs. (2.1) the expansions

$$
\begin{equation*}
q=q_{0}+A^{-1} q_{1}+A^{-2} q_{2}+\ldots(q=n, u, T) \tag{2,2}
\end{equation*}
$$

we obtain the Euler equations in the zero approximation. For the large values of time we write the solution of the Euler equations in the form

$$
\begin{array}{ll}
n_{0}=\frac{g_{n}(\lambda)}{t}+\frac{g_{1}(\lambda)}{t^{t_{3}}}+\ldots, & u_{0}=\lambda+\frac{\omega(\lambda)}{t^{t^{2} / 3}}+\ldots  \tag{2.3}\\
T_{0}=\frac{c_{0}(\lambda)}{t^{t_{3}}}+\frac{c_{1}(\lambda)}{t^{t^{t / 2}}}+\ldots, & \lambda=\frac{x}{t}
\end{array}
$$

The functions $g_{0}, g_{1}, \omega, c_{0}, c_{1}$ are connected by the equations

$$
\begin{aligned}
& g_{1}=-\frac{15}{4} g_{0}^{4_{3}}\left(\frac{g_{0}^{\prime}}{g_{0}^{1_{s}}}\right)^{\prime}, \quad \omega=-\frac{5}{2} \frac{g_{0}^{\prime}}{g_{0}^{1 / 2}} \\
& c_{0}=g_{0}^{1_{1 / 3}}, \quad c_{1}=\frac{2}{3} \frac{g_{1}}{g_{0}^{1 / 3}}
\end{aligned}
$$

where the prime denotes differentiation with respect to $\lambda$. The exact form of the function $g_{0}(\lambda)$ depends on the initial conditions. In the next approximation we have

$$
\begin{align*}
& \frac{\partial n_{1}}{\partial t}+\frac{\partial}{\partial x} n_{1} u_{0}+\frac{\partial}{\partial x} n_{0} u_{1}=0  \tag{2.4}\\
& n_{1} \frac{\partial u_{0}}{\partial t}+n_{0} \frac{\partial u_{1}}{\partial t}+n_{0} u_{0} \frac{\partial u_{1}}{\partial x}+n_{1} u_{0} \frac{\partial u_{0}}{\partial x}+n_{0} u_{1} \frac{\partial u_{0}}{\partial x}=-\frac{1}{2} \frac{\partial}{\partial x} n_{1} T_{0}- \\
& \quad \frac{1}{2} \frac{\partial}{\partial x} n_{0} T_{1}+\frac{2}{3} \frac{\partial}{\partial x}\left(T_{0}{ }^{\vee} \frac{\partial u_{0}}{\partial x}\right) \\
& \frac{3}{2}\left(n_{1} \frac{\partial T_{0}}{\partial t}+n_{0} \frac{\partial T_{1}}{\partial t}+n_{1} u_{0} \frac{\partial T_{0}}{\partial x}+n_{0} u_{1} \frac{\partial T_{0}}{\partial x}+n_{0} u_{0} \frac{\partial T_{1}}{\partial x}\right)= \\
& \quad-n_{1} T_{0} \frac{\partial u_{0}}{\partial x}-n_{0} T_{1} \frac{\partial u_{0}}{\partial x}-n_{0} T_{0} \frac{\partial u_{1}}{\partial x}+\frac{41}{3} T_{0}{ }^{\nu}\left(\frac{\partial u_{0}}{\partial x}\right)^{2}+\frac{15}{8} \frac{\partial}{\partial x}\left(T_{0}{ }^{\nu} \frac{\partial T_{0}}{\partial x}\right)
\end{align*}
$$

For $v \neq 1$ Eqs. (2.4) and the similar system for $n_{2}, u_{2}$ and $T_{2}$ admit the asymptotics

$$
\begin{aligned}
& T_{1} \sim t^{-s / 2+\varepsilon}, \quad u_{1} \sim t^{-y_{3}+\varepsilon}, \quad n_{1} \sim t^{-s / 3}+\varepsilon \\
& T_{2} \sim t^{-22_{3}+2 \varepsilon}, \quad u_{2} \sim t^{-4 /\left.\right|_{3}+2 \varepsilon}, \quad n_{2} \sim t^{-\eta / 3+2 \varepsilon}, \quad \varepsilon=2 / 3(1-v)
\end{aligned}
$$

Consequently if $v>1, T_{1}$ and $T_{2}$ decrease faster than $T_{0}$ as $t \rightarrow \infty$, and the inner gas dynamic solution is uniformly suitable. If $v<1$, the expansion (2.2) diverges as $t \rightarrow \infty$ due to the increasing higher order approximations. The latter case was studied in [1]. In the region $t_{1}=A^{-\sigma} t=0(1)$ the temperature satisfies an equation of the type (1.9)

$$
t_{1}{ }^{2} \frac{\partial^{2} \tau}{\partial t_{1}{ }^{2}}+t_{1} \frac{\partial \tau}{\partial t_{1}}\left(3+g_{0}(\lambda) \tau^{1-v}\right)+\frac{2}{3} g_{0}(\lambda) \tau^{2-v}=0, \quad \tau=T A^{1 /(1-v)(2.5)}
$$

For $v=1$ Eq. (2.5) becomes linear and has the solution

$$
\begin{equation*}
\tau=G_{1} / t_{1}^{\delta_{1}}+G_{2} / t_{2}^{\delta_{1}} \delta_{1,2}=1+\frac{g_{0}}{2} \pm \sqrt{1+\frac{g_{0}}{3}+\frac{g_{0}^{2}}{4}} \tag{2.6}
\end{equation*}
$$

We see from (2.6) that the condition of matching with the inner solution $T=c_{0} / t^{1}$ is violated. Since at $v=1$ the introduction of the variable $t_{1}$ no longer makes sense, we note that an equation of the type (2.5) follows directly from the kinetic equation under the assumption that $u=\lambda, t \rightarrow \infty$. Moreover, the function $g_{0}(\lambda)$ must be replaced by $A g_{0}(\lambda), A \rightarrow \infty$. Then, assuming that $T=T_{0}+A^{-1} T_{1}+A^{-2} T_{2}+$ . . . , we obtain

$$
T_{0}=\frac{c_{0}(\lambda)}{t^{2 / 2}}, \quad \frac{\partial T_{1}}{\partial t}+\frac{2}{3} \frac{T_{1}}{t}=\frac{8}{9} \frac{c_{0}}{g_{0} t^{2} t^{2}}, \quad \frac{\partial T_{2}}{\partial t}+\frac{2}{3} \frac{T_{2}}{t}=\frac{8}{9} \frac{T_{1}}{g_{0} t}-\frac{8}{27} \frac{c_{0}}{g_{0} t^{t_{1}}}
$$

i.e. the Navier-Stokes and Barnett approximations contain a logarithmic singularity at infinity

$$
T_{1}=\frac{c_{1}}{t^{2 / 3}}+\frac{8}{9} \frac{c_{0}}{g_{0}} \frac{\ln t}{t^{1 / 2}}, \quad T_{2}=\frac{c_{2}}{t^{2 / 3}}+\frac{8}{9} \frac{1}{g_{0}}\left(c_{1}-\frac{c_{0}}{3 g_{0}}\right) \frac{\ln t}{t^{1 / 2}}+\frac{64}{72} \frac{c_{0}}{g_{0}^{2}} \frac{\ln ^{2} t}{t^{2 / 2}}
$$

Naturally, the same results are also obtained from the conservation equation. The appearance of nonuniformity is connected with the term $4 / 3 I_{0}\left(\partial u_{0} / \partial x\right)^{2}$ in the equation for $T_{1}$ of the system (2.4), and with the terms

$$
\frac{4}{3} T_{1}\left(\frac{\partial u_{0}}{\partial x}\right)^{2}, \quad \frac{8}{9} \frac{T_{0}}{n_{0}}\left(\frac{\partial u_{0}}{\partial x}\right)^{3}\left[1-\frac{1}{2} \frac{T_{0}}{\mu_{0}} \frac{d \mu_{0}}{d T_{0}}\right]
$$

in the equation for $T_{2}$.
To remove the logarithmic singularity, we impose a small perturbation on the independent coordinates

$$
\begin{align*}
& t=\zeta+A^{-1} \Theta_{1}(\zeta, \eta)+A^{-2} \Theta_{2}(\zeta, \eta)+\ldots  \tag{2.7}\\
& x=\eta+A^{-1} X_{1}(\zeta, \eta)+A^{-2} X_{2}(\zeta, \eta)+\cdots
\end{align*}
$$

The macroscopic quantities are expandedinto the series

$$
\begin{align*}
& n(t, x, A)=N_{0}(\zeta, \eta)+A^{-1} N_{1}(\zeta, \eta)+\ldots  \tag{2,8}\\
& u(t, x, A)=V_{0}(\zeta, \eta)+A^{-1} V_{1}(\zeta, \eta)+\ldots \\
& T(t, x, A)=\tau_{0}(\zeta, \eta)+A^{-1} \tau_{1}(\zeta, \eta)+\ldots
\end{align*}
$$

The functions $\Theta_{i}$ and $X_{i}$ are determined by the requirement that the singularity does not increase in each subsequent approximation. The transformation (2.7), (2.8) yields the following expressions for (2.1) in the zero approximation

$$
\begin{align*}
& \frac{\partial N_{0}}{\partial \zeta}+\frac{\partial V_{0} N_{0}}{\partial \eta}=0  \tag{2.9}\\
& \frac{\partial V_{0}}{\partial \zeta}+V_{0} \frac{\partial V_{0}}{\partial \eta}=-\frac{1}{2} \frac{\tau_{0}}{N_{0}} \frac{\partial N_{0}}{\partial \eta}-\frac{1}{2} \frac{\partial \tau_{0}}{\partial \eta} \\
& \frac{\partial \tau_{0}}{\partial \zeta}+V_{0} \frac{\partial \tau_{0}}{\partial \eta}=-\frac{2}{3} \tau_{0} \frac{\partial V_{0}}{\partial \eta}
\end{align*}
$$

In the next higher approximation the last equation of (2.1) yields

$$
\begin{aligned}
& \frac{3}{2}\left(N_{1} \frac{\partial \tau_{0}}{\partial \zeta}+N_{0} \frac{\partial \tau_{1}}{\partial \zeta}+V_{1} N_{0} \frac{\partial \tau_{0}}{\partial \eta}+V_{0} N_{1} \frac{\partial \tau_{0}}{\partial \eta}+N_{0} V_{0} \frac{\partial \tau_{1}}{\partial \eta}\right)= \\
& \quad-N_{1} \tau_{0} \frac{\partial V_{0}}{\partial \eta}-N_{0} \tau_{1} \frac{\partial V_{0}}{\partial \eta}-N_{0} \tau_{0} \frac{\partial V_{1}}{\partial \eta}+\left[\frac{3}{2} N_{0} \frac{\partial \tau_{0}}{\partial \zeta} \frac{\partial \theta_{1}}{\partial \zeta}+\right. \\
& \frac{3}{2} N_{0} \frac{\partial \tau_{0}}{\partial \eta} \frac{\partial X_{1}}{\partial \zeta}+\frac{3}{2} V_{0} N_{0} \frac{\partial \tau_{0}}{\partial \eta} \frac{\partial X_{1}}{\partial \eta}+\frac{3}{2} V_{0} N_{0} \frac{\partial \tau_{0}}{\partial \zeta} \frac{\partial \theta_{1}}{\partial \eta}+ \\
& \left.N_{0} \tau_{0} \frac{\partial V_{0}}{\partial \eta} \frac{\partial X_{1}}{\partial \eta}+N_{0} \tau_{0} \frac{\partial V_{0}}{\partial \zeta} \frac{\partial \theta_{1}}{\partial \eta}\right]+\frac{4}{3} \tau_{0}\left(\frac{\partial V_{0}}{\partial \eta}\right)^{2}+\frac{15}{8} \frac{\partial}{\partial \eta}\left(\tau_{0} \frac{\partial \tau_{0}}{\partial \eta}\right)
\end{aligned}
$$

The singularity at infinity is stipulated by the term $4 / 3 \tau_{0}\left(\partial V_{0} / \partial \eta\right)^{2}$. Let us set $X_{1}=$ 0 . The choice of the function $\Theta_{1}$ from the relation

$$
\begin{equation*}
\frac{3}{2} N_{0} \frac{\partial \theta_{1}}{\partial \zeta} \frac{\partial \tau_{0}}{\partial \zeta}+\frac{3}{2} N_{0} V_{0} \frac{\partial \tau_{0}}{\partial \zeta} \frac{\partial \theta_{1}}{\partial \eta}+N_{0} \tau_{0} \frac{\partial V_{0}}{\partial \zeta} \frac{\partial \Theta_{1}}{\partial \eta}+\frac{4}{3} \tau_{0}\left(\frac{\partial V_{0}}{\partial \eta}\right)^{2}=0 \tag{2,10}
\end{equation*}
$$

eliminates the nonuniform term.
We shall seek the solution of the partial differential equation $(2,10)$ for the case in which we choose the exact gas dynamic solution [8] to represent the terms $N_{0}, V_{0}, \tau_{0}$, satisfying the Euler equations ( 2.9 ) in the $\zeta, \eta$ variables. The following formulas hold for this gas dynamic solution at large $\zeta$ :

$$
N_{0}=\frac{\left[1-s^{2}\right]^{3 / 2}}{k \zeta}, \quad V_{0}=\frac{\eta}{\zeta}, \quad \tau_{0}=\frac{1-s^{2}}{k^{2} / s^{2 / 3}}, \quad k=3 \sqrt{\frac{5}{6}}, \quad s=\frac{\eta}{k \zeta}
$$

In this case the characteristic equation is written in the form

$$
\begin{equation*}
\frac{d \eta}{d \zeta}=V_{0}+\frac{2 / \mathrm{s} \tau_{0} \partial V_{0} / \partial \zeta}{\partial \tau_{0} / \partial \zeta} \frac{\eta}{\zeta} \frac{2-5 s^{2}}{1-4 s^{2}} \tag{2.11}
\end{equation*}
$$

Integrating (2.11) we obtain

$$
\begin{equation*}
\zeta=c s\left(1-s^{2}\right)^{3 / 2}, \quad c=\text { const } \tag{2,12}
\end{equation*}
$$

The relation (2.10) is rewritten along the direction of (2.12) as follows:

$$
\begin{equation*}
\frac{d \Theta_{1}}{d \zeta}=\frac{4 / \varepsilon}{3\left[1-s^{2}\right]^{1 / 2}\left[1-4 s^{2}\right]} \tag{2.13}
\end{equation*}
$$

Integrating (2.13) under the condition that $\Theta_{1} \rightarrow 0, \zeta \rightarrow 0$, we obtain

$$
\begin{equation*}
\Theta_{1}=\frac{4 k}{3} \zeta\left[1-\left(\frac{\eta}{k \zeta}\right)^{2}\right]^{-3 / 2} \tag{2.14}
\end{equation*}
$$

The gas dynamic solution in which the time coordinate $t$ is replaced by $\zeta$ is, in accordance with (2.7), (2.14), uniformly suitable in the sense that no singularity appears in the terms of the order of $A^{-1}$. Singularities appearing in the higher order approximations are removed by suitable choice of $\theta_{i}, X_{i}$.

## REFERENCES

1. Zhuk, V.I. and Shakhov, E. M., Expansion of a plane layer of rarefied gas into vacuum. (English translation), Pergamon Press, Zh. vychisl. Mat. mat. Fiz. Vol. 13, № 4, 1973.
2. Grundy, R.E., Steady cylindrical expansion of a monoatomic gas into vacuum. AIAA Journal, Vol. 7, № 12, 1969.
3. Edwards, R. H. and Cheng, H. K., Steady expansion of gas into vacuum. AIAA Journal, Vol. 4,1 № $3,1966$.
4. Hamel, B. B. and Willis, D. R., Kinetic theory of source flow expansion with application to the free jet. Phys. Fluids, Vol. 9, № 5, 1966.
5. Shakhov, E. M. . On the generalization of the relaxational kinetic Krook equation. Izv. Akad. Nauk SSSR, MZhG, № 5, 1968.
6. Grundy, R. E. , Axially symmetric expansion of a monoatomic gas from an orifice into a vacuum. Phys. Fluids, Vol. 12, № $10,1969$.
7. Limar, E. F., Svettsov, V.V. and Shidlovskii, V. P. . Plane problem of flow of gas into vacuum under arbitrary values of the Knudsen number. (English translation), Pergamon Press, Zh. Vychisl. Mat. mat. Fiz. , Vol. 14, № 1, 1974.
8. Mirels, H. and Mullen, J.F., Expansion of gas clouds and hypersonic jets bounded by a vacuum. AIAA Journal, Vol. 1, № $3,1963$.
