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The problem of expansion of a plane layer of a Maxwellian g~intovacuum is 
considered, The expansion in terms of the Knudsen numbers has a logarithmic 
singularity at large values of time, and this singularity can be removed by slight 
stretching of the time coordinate. An asymptotic solution is deriveddescribing 
a distant field of flow in.a plane stationary stream for the Knudsen numbers ten- 
ding to zero. 

Investigation of the plane expansion of a rarefied gas of finite mass into va- 
cuum at small initial Knudsen numbers [l&shows that the continuous medium 
regime is violated when the values of time are of the order of Kn+‘, a = 

-’ ,under the assumption that the viscosity and temperature are con- 
~$~,,‘~he power relation p = 2’“. In a particular case when Y = 1 is stu- 
died below, a uniformly valid solution can be obtained using the Lightbill me- 
thod of deformed coordinates. This method was applied for the first time in [Z] 
to a steady flow of a rarefied gas into vacuum. 

1. Before studying the expansion of a Maxwellian gas, we shall give an asymptotic 
solution describing a distant flow field in a plane stationary stream, since the equations 
in the outer region remain the same on passing to a one-dimensional unsteady problem. 

A steady expansion of gas with cy~ndrical symmetry was analyzed. in [Z-.4]. We shall 
consider a more general flow in which the macroparameters depend not only on the ra- 
dius, but also on the azimuthal angle cp* The present formulation can serve as a model 
for the conditions whiih exist when a rarefied gas flows through a plane slit. Let us write 
the generalized kinetic Krook’s equation in cylindrical coordinates 

A--n-l, p,= T’ 

All quantities are reduced to their dimensionless form relative to the gas parameters near 
the slit ; the Knudsen number defined across the slit width is assumed small; the invis- 
cid flow equations become valid when Kn -to, The radial character of the distant 
flow enables us to write the gas dynamic solution in the form 

l&=Wgf *1 Pl (cp) 
t’18 

. . .( n= y+7+... 

.Lm+ 
r’lr 

. . ., T = rpe$jl*‘r + qp + . . ., f_, Do 

(1.2) 

Here u and 2, denote, respectively, the radial and transversal velocity components, wa 
is the limiting velocity during the isentropic flow into vacuum and r is the coordinate 
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defining the distances from the z-axis, along which the gas parameters are not changed. 
By specifying p. (cp) , we define the remaining functions w,, v,, pX, ql . The form of 
p. (cp) follows from the e&t solution at r = 0 (I), Substituting the expressions (1.2) 
into (1.1) and equating the convective and the collision terms, we find that the inner 
gas dynamic solution is ineffective at the distances 

r = 0 (Aa), CT = s/s (1 - Y)-l 

Following a method used earlier in investigating an axisymmetric flow [S], we pass to 

the variables r, = ~A-B 
1 

n, = n&, T 
1 

= TA2ej3 

a = (6,. - u) Ao/3, fi = (E, - v) A”l3, y = E, A43 

Equation (1.1) now becomes 

Integrating (1.3) over the space of velocities with weights a and p, we obtain the fol- 
lowing equations for the macroscopic velocity : 

au au 
llrlar, +v~-v~=O(A-~=‘~) (1.4) 

The outer solution admits the representation 

u c U. + Z&A~*Is + . . . . nl = No +Nrd-@'3 +.= . 

~=V,,+V~k~f3+,,., f=Po+FIA-++... 

From Eqs. (1.4) and the equation of continuity we obtain, utilizing the conditions of 
match~g to the inner solution (1.2) 

u. = Wg, Tro = 0, No = PO (qP) / rr 

Taking into account the results obtained, we can write a kinetic equation for the func- 
tion F, in the form 

rJo ar, aFo _ gu, o$$? = po(cJ) +-” (F+ - F) (195) 

Let us introduce the quantities 

i+--\ a2Foda dB dy, 
01 

FA = N+ \ BaFo da dB dy 
1 

(1.6) 

7 
1 ~ 

Y =K~y2FodadBdy, B=fkl, $-~=$~-j-F+p 

From (1.5) we obtain the following moment eC@iOm: 

$3 = 
1 



Properties of macroparameters of rarefied gas expansion into vacuum 6’7 

Adding Eqs. (1.7) together and using (1.6), we obtain 

3a-t F S-=-V 
4 ar, *1 

(1.8) 

Substitution of (1.8) into the last equation of the system (1.7) now yields the following 
equation for the temperature: 

a% 
f12 w + rl ar ~(34P(cP)~l-‘)+~p(cp)72-v=O 

P (cp) = PO (cp) / uo 
Using the transformation 

e = In t, 3~ I de = -2+3! 

we reduce (1.9) to the following first order equation: 

(1.9) 

(1.10) 

The singularity z = 0, Y = 0 is a node, and the point a = 0, Y = 1 is a sad- 
dle. The possibility of matching with the inner solution is determined by the behavior 
of the integral curves at the point of infinity. A unique integral curve exists which emer- 

ges from the saddle-type singularity ‘t = 00, Y = r/s, and the corresponding solution 
in the physical plane is 

z = G (rp) / ?..ll”r rl+ 6 

Comparing this with (1.2), we find the multiplying factor G (I-+) = Ipo (cp)l”‘. The in- 
tegral curve emerging from the singularity z = 00, Y = VQ, cannot arrive at the 
saddle point ‘G = 0, Y = 1, since by (1.10) we have iJY / dr > 0 when l/s ( 

Y < 1. Thus the asymptotics with rl -+ co is determined by the solution entering the 

node T=O, Y -0 
Y = $ T’-” + 0 (pv) (1.11) 

and this yields the following expression for the temperature: 

T= N $- p 1 n rl) (1 - y)]-l’(l-v), l-1 -) 00 

The properties of the solution shown above can be confirmed quantitatively by the re- 
sults of the numerical investigation in [7] of the flow from a plane slit, according to 

which the density and velocity are not significantly affected by the decrease in the Knud- 
sen number, while the temperature at the distance from the slit shows a tendency to de- 

crease practically to zero. Moreover, the increase in temperature with increasing azi- 

muthal angle cp noted in [7] follows from the formula (1.12) since the function p. (cp) 
decreases on moving away from the central streamline. 

2. Next we consider a one-dimensional unsteady expansion of gas into vacuum, using 
the conservation equations 

(2.1) 
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2p(2)au a _ (a) --- 
aax ax qx 

p $pA-, k = s i5pA-l, p = T’, A 

where we use the dimensionless coordinates of [I]. By Pi?, qr@) we denote the Barnett 

stress and heat flux components which, for the generalized Krook equations, are written 
in the form 

Substituting into Eqs. (2.1) the expansions 

Q=~a+~-1q,+~-2qs+... (q=n+u,T) (2.2) 

we obtain the Euler equations in the zero approximation. For the large values of time we 

write the solution of the Euler equations in the form 

n0 =fi t + q+ . . . . u.=h+y+... (2.3) 

To= +)+q+. ..) h=.+ 

The functions g,, g,, CO, CO, c1 are connected by the equations 

g, go’ = - 15 go’ ‘, 5 

7j- d’ Qs 8’( > 
0= ___ 

2 g’d’ 

co = g;/*, 
2 g1 

Q=qi) 

where the mime denotes differentiation with respect to h . The exact form of the func- 

tion g, (A) depends on the initial conditions. In the next approximation we have 

For v # 1 Eqs. (2.4) and the similar system for ns, us and 2’s admit the asymptotics 

T, N p’ls+c , u1 - t-‘lr+r, n, - t-%+c 

T2 - t-*la+2e f u2 N yls+2r , n2 N t-rl*+2c, E = 2/3 (1 - Y) 
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Consequently if v > 1, T1 and ?‘s decrease faster than T,, as t + co , and the inner 
gas dynamic solution is uniformly suitable. If v < 1, the expansion (2.2) diverges as 
t + 00 due to the increasing higher order approximations. The latter case was studied 

in [ 11. In the region tI = A-at = 0 (1) the temperature satisfies an equation of the 

g (3 + go (h) zl-“) + $ go (h) I?-” = 0, IY = TAE’(l-“’ t2. 5, 

For v = 1 Eq. (2.5) becomes linear and has the solution 

We see from (2.6) that the condition of matching with the inner solution T = co / t’la 
is violated. Since at v = 1 the introduction of the variable t, no longer makes sense, 

we note that an equation of the type (2.5) follows directly from the kinetic equation un- 
der the assumption that u = h, t --f co . Moreover, the function go (A) must be re- 

placed by Ago (A), A -MO. Then, assuming that T = To + A-IT, + A -“T2 + 
. , . , we obtain 

i. e. the Navier-Stokes and Barnett approximations contain a logarithmic singularity at 
infinity 

T1 = $++$, Tz=~+~~(e,-~)~+~~~ 

Naturally, the same results are also obtained from the conservation equation. The appea- 

rance of nonuniformity is connected with the term 431, (iho/~~)* in the equation 
for T, of the system (2.4), and with the terms 

in the equation for 2’s. 

To remove the logarithmic singularity, we impose a small perturbation on the inde- 
pendent coordinates 

t = 5 + A-% (L r)) + A-‘% (5, rl) + . . . (2.7) 

z = r + A--lx, (5, r) + A-‘& (5, rl) + . . . 

The macroscopic quantities are expanded into the series 

n (4 x, -4) = No (5, r) + A -‘N, (5, q) + . . . (2.8) 
u (4 r, A) = Vo (5, r) + A-% (5, q) + . . . 
T 0, 2, A) = 70 (5, rl) + A -$ (5, q) + . . . 

The functions Oi and Xi are determined by the requirement that the singularity does 
not increase in each subsequent approximation. The transformation (2.7). (2.8) yields the 
following expressions for (2.1) in the zero approximation 

_!$o+??$Lo 
(2.2) 
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In the next higher approximation the last equation of (2.1) yields 

The singularity at infinity is stipulated by the term d/32, (aV,, / 6%~)~. Let us set Xl= 
0. The choice of tire function 6, from the relation 

eliminates the nonuniform term, 

We shall seek the solution of the partial differential equation (2.10) for the case in 

which we choose. theexact gas dynamic solution [8] to represent the terms Ns, Vs, ‘to* 
satisfying the Euler equations (2.9) in the I;, q variables, The following formulas hold 

for this gas dynamic solution at large 5 : 

No=~‘;;al’l’, V,+, T~=$=$, k=3f& 8=+ 

In this case the characteristic equation is written in the form 

$=v,+ 2/8zoav,/a< Q 2 -552 

&O/a< T-T-x3- 

Integrating (2.11) we obtain 
5 = cs(1- ss)1:,, c=corl& 

The relation (2.10) is rewritten along the direction of (2.12) as follows: 

d8, 4k 

- = 3 \I _ $]‘fr [1 -- 4ssj d5 

Integrating (2.13) under the condition that @I + 0, c + 0 , we obtain 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

The gas dynamic solution in which the time coordinate t is replaced by 5 is, in ac- 
cordance with (‘A’?), (Z.l4),uniformly suitable in the sense that no singularity appears 

in the terms of the order of A-‘. Singularities appearing in the higher order approxi- 

mations are removed by suitable choice of 81, Xi* 
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